FREE-RADICAL ADDITION OF BrCC1₃ TO 1-DECENE INITIATED BY TETPAHYDROFURANE

M. HEINTZ, G. LE NY and J.Y. NEDELEC*

C.N.R.S., GR n° 12, 2, rue H. Dunant, 94320 THIAIS (France)

 $\underline{Summary}$: Kharasch addition of BrCCl₃ to 1-decene and spin-trapping ESR observations show that BrCCl₃ is spontaneously reduced in THF.

Polyhalogenated compounds (CCl₄, BrCCl₃, CF₂Br₂...) are reduced by single electron transfer from organic nitrogen or sulfur compounds, but sofar such reaction has not been pointed out for ethers 1,2 .

 $$\mathbb{R}$$ to 1-decene at room temperature even in the dark

$$Brcc1_3 + CH_3(CH_2)_7 - CH = CH_2 - CH_3(CH_2)_7 - CH - CH_2CC1_3$$
 \underline{A}

BrCCl $_3$ (1.2 ml, 0.02 mol) and 1-decene (1.9 ml, 0.01 mol) were stirred for 6 hrs at room temperature in 25 ml of THF in the dark, in air or under argon, to give \underline{A} in 50 % yield (GLC) and less than 5 % of the non-brominated products \underline{B} and \underline{C}^3 .

Products were isolated and identified by comparison (GLC, 1 H NMR) with authentical samples obtained from the peroxyde initiated addition of BrCCl $_3$ to 1-decene (\underline{A} and \underline{C}), and of HCCl $_3$ to 1-decene (\underline{B}).

This experiment was repeated several times and with THF's of various origins 4 . Every time \underline{A} was the main product (30 %-50 % yield determined by GLC) but the rate of its formation (from 1 to 12 hrs) 3 was found to depend on the batch of THF.

In pentane instead of THF no reaction took place. At 40°C the reaction was accelerated (average factor 3) and we obtained A and B in 20 % yield each.

On irradiating the mixture with a 250 W sun lamp at 25° C the rate of formation of \underline{A} was increased (factor 6) without change in the yields of the products; it was checked that the addition did not occur in pentane.

We have also made the following ESR observations. When we added 0.5 cm³ of BrCCl $_3$ to 1 cm³ of THF in the presence of tBuNO at room temperature we very rapidly obtained the typical complex signal of radical \underline{D} (a_N = 13.87 G; a_{Cl} = 2.53 G; g = 2.0069) which slowly evolved into the simple 1:1:1 triplet (a_N = 7.6 G; g = 2.0074) usually attributed to \underline{E}^5 . After 15 minutes both radicals were observed simultaneously as shown on the figure.

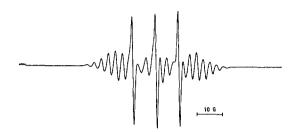


Figure : ESR spectrum of the two nitroxides \underline{D} and \underline{E} formed in the reaction of THF and BrCCl $_3$ in cyclohexane in the presence of tBuNO after 15 minutes at room temperature.

The nature of the adduct as well as the ESR observations clearly indicate that we are dealing with a free-radical process involving the formation of ${}^{*}CCl_{3}$. So, even if the nature of the donor remains to be unequivocally specified, the initiation step of the chain addition certainly is a single electron reduction of the carbone-bromine bond in BrCCl₃.

REFERENCES

- J.A.K. HARMONY in "Methods in Free-Radical Chemistry", E.S. HUYSER Ed., Vol. 5, chap. 2,
 M. Dekker Inc., New-York, 1974.
- 2. I. RICO, D. CANTACUZENE and C. WAKSELMAN. J. Org. Chem., 1983, 48, 1979, and references cited therein.
- Reactions were followed by GLC using internal standard and stopped at the maximum yield of A. Yields were not optimized.
- 4. Three THF's have been tested and used as received and freshly distilled over Na/benzophenone: i) from SDS (Solvants Documentation Synthèse, Peypin, France): ">99.5 % stabilized with 50 ppm ionol"; ii) from Janssen Chimica (France): "99.9 % with <0.025 % of BHT"; iii) from Eqa-Chimie (France): "spectrophotometric grade 99.5 %, free of inhibitor".
- 5. M. J. PERKINS in "Advances in Physical Organic Chemistry", vol. 17, p. 1, V. GOLD and D. BETHELL Ed., Academic Press Inc., London, 1980.

(Received in France 29 August 1984)